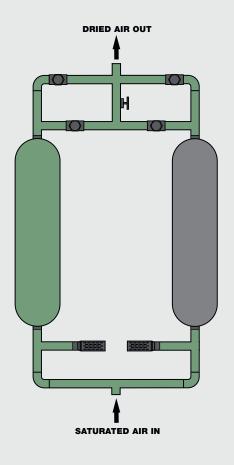


DESICCANT COMPRESSED AIR DRYERS

Externally Heated; Heated Blower Purge; Heatless; Modular 3-7500 cfm

CLEAN, DRY COMPRESSED AIR IS ESSENTIAL

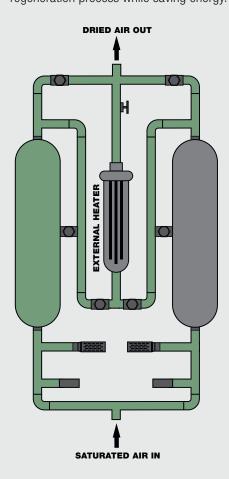
Sullair Desiccant Compressed Air Dryers are engineered for the most critical applications — providing dry compressed air where you need it most.


Compressed air contamination such as water, dust, bacteria, microorganisms and industrial acids can ruin product and foul processes. Removing it is essential to help protect your downstream equipment and reduce maintenance cost and downtime.

 Ideal for applications requiring extremely low dew point -40°F/-40°C

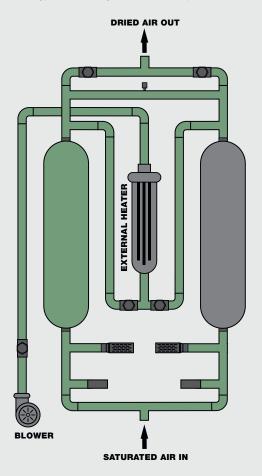
REGENERATION METHODS

Heatless


Uses an average of 15% of process air during the regeneration process
Heatless dryers divert a small amount of dried process air from the drying vessel to regenerate the opposite vessel.

Externally Heated

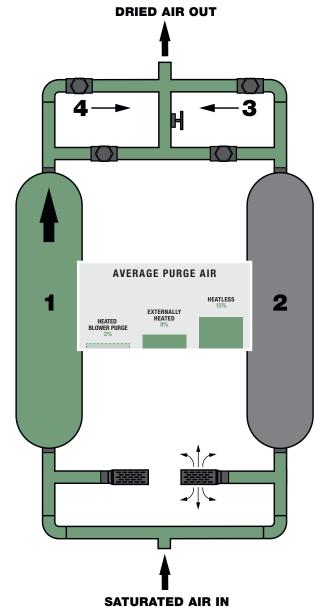
Uses an average of 8% of process air during the regeneration process


Heated dryers use an additional heat source—reducing process air loss during the regeneration process. The additional heat source helps enhance the drying and regeneration process while saving energy.

Heated Blower Purge

Uses an average of 2% of process air during the regeneration process

Heated Blower Purge dryers use a combination of an additional heat source, air from a blower and little to no process air. The three-tiered method helps optimize drying and regeneration processes while reducing energy consumption — maximizing energy cost savings over the lifecycle.


HOW DESICCANT DRYING WORKS

Sullair Desiccant Dryers have a dual tower design in which both vessels are filled with desiccant material.

- 1. Saturated, compressed air passes through vessel one where the desiccant adsorbs moisture. This helps lower the dewpoint to expel dry compressed air
- **2.** Once vessel one reaches a set level of saturation, the air switches to pass through vessel two
- **3.** While the air is passing through vessel two, vessel one dries and regenerates the desiccant material
- **4.** When vessel two reaches a set level of saturation, the air switches to pass through vessel one

SULLAIR DESICCANT DRYERS

- SAV Series Heated Blower Purge 500 to 7500 cfm
- SAH Series Externally Heated 500 to 3000 cfm
- SA Series Heatless 55 to 3000 cfm
- DMD Series Modular 3 to 240 cfm

SAV SERIES

DESICCANT HEATED BLOWER PURGE COMPRESSED AIR DRYER 500 – 7500 cfm

- Blower regeneration technology with heat source helps save energy and optimize drying and regeneration processes
- Allen-Bradley® PLC Color Touch Screen Controller
 - Sullair Desiccant Dryer (SDD) Energy Management System matches supply to demand—Up to 80% in energy savings
 - Heatless backup for more uptime
 - Dewpoint control
 - Supplemental cooldown
 - Alarm systems designed to help reduce downtime with easy detection and diagnostics
 - Remote monitoring of operation status, data trends and alarms via email or text alerts
- -40°F/-40°C dew point performance
- Desiccant designed for higher packing density increases efficiency and reliable operation
- High-Performance switching valves help provide worry-free performance tailored to your application
- Engineered to stand up to harsh environments
 - Rugged frame with forklift pockets for easy transit and installation
- NEMA 12
- Single pre-filter and after-filter mounted
- ASME/CRN vessels
- ETL listed (US/CSA)

Standard Options

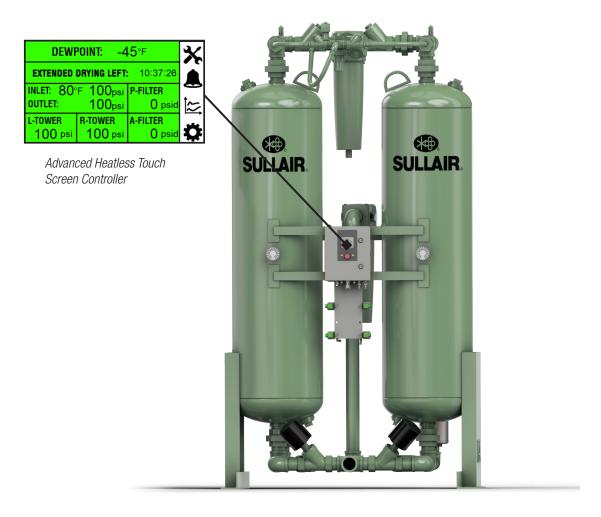
- 3-valve bypass
- 575V/3Ph/60Hz power
- NEMA 4
- Stainless steel control line tubing
- Tank insulation
- Outdoor low ambient kit
- Timer drain on pre-filter

Additional Options Available on Request

- Customized filtration
- Instrumentation
- ASME B31.3 piping
- Pneumatic controls
- High pressure 200 psi & 250 psi

SAH SERIES

DESICCANT EXTERNALLY HEATED COMPRESSED AIR DRYER 500 – 3000 cfm


- External heat source helps save energy
- Alllen-Bradley® PLC Color Touch Screen Controller
 - Sullair Desiccant Dryer (SDD) Energy Management System matches supply to demand—Up to 80% in energy savings
 - Heatless backup for more uptime
 - Dewpoint control
 - Supplemental cooldown
 - Alarm systems designed to help reduce downtime with easy detection and diagnostics
 - Remote monitoring of operation status, data trends and alarms via email or text alerts
- -40°F/-40°C dew point performance
- Desiccant designed for higher packing density increases efficiency and reliable operation
- High-Performance switching valves help provide worry-free performance tailored to your application
- Engineered to stand up to harsh environments
 - Rugged frame with forklift pockets for easy transit and installation
- NEMA 12
- Single pre-filter and after-filter mounted
- ASME/CRN vessels
- ETL listed (US/CSA)

Standard Options

- 3-valve bypass
- 575V/3Ph/60Hz power
- NEMA 4
- Stainless steel control line tubing
- Tank insulation
- Outdoor low ambient kit
- Timer drain on pre-filter

Additional Options Available on Request

- Customized filtration
- Instrumentation
- ASME B31.3 piping
- Pneumatic controls
- High pressure 200 psi & 250 psi

SA SERIES

DESICCANT HEATLESS COMPRESSED AIR DRYER 55 – 3000 cfm

- Allen-Bradley® PLC Basic Controller
 - Selectable cycle setting
 - Manual stepping
- -40°F/-40°C dew point performance
- Desiccant designed for higher packing density increases efficiency and reliable operation
- High-Performance switching valves help provide worry-free performance tailored to your application
- Engineered to stand up to harsh environments
- NEMA 12
- Single pre-filter and after-filter mounted
- ASME/CRN vessels
- ETL listed (UL/CSA standards)

Standard Options

- Enhanced controller options
 - Basic Plus
 - Sullair Desiccant Dryer (SDD) Energy Management System matches supply to demand—Up to 80% in energy savings
 - Select alarms
 - Heatless Advanced includes Basic Plus features plus:
 - Touch Screen
 - Additional alarms
 - Remote monitoring of operation status, data trends and alarms via email or text alerts
- 3-valve bypass
- NEMA 4X stainless steel
- Stainless steel control line tubing
- Outdoor low-ambient kit
- Timer drain on pre-filter
- High Pressure 200 psi

Additional Options Available on Request

- Customized filtration
- NEMA 7
- Additional instrumentation
- ASME B31.3 Piping
- Pneumatic controls
- High Pressure 250 psi

DMD SERIES

DESICCANT MODULAR COMPRESSED AIR DRYER 3 - 240 cfm

- Compact design
- Inlet and purge manifold design for low pressure drop
- Mini PLC monitor
- Completely automatic
- Point-of-use placement

Options

- Pre- and after-filter (shipped loose)
- Mounted filters with 3-valve bypass
- Visual moisture indicator
- Energy efficient demand cycle control
- Dew point monitor
- -4°F (-20°C) or -100°F (-73°C) pressure dew point

SAV SERIES

DESICCANT HEATED BLOWER PURGE COMPRESSED AIR DRYERS

FREQUENCY: 60 Hz & 50 Hz

Model #	Flow Rate (cfm)	Connection Size (FLG)	Height (in)	Width (in)	Depth (in)	Total Fill Weight (lbs)
SAV500	500	2" NPT	85	55	49	2840
SAV600	600	2" NPT	89	57	52	3420
SAV800	800	2" NPT	96	68	60	4490
SAV1000	1000	3"	103	78	60	5700
SAV1200	1200	3"	115	96	66	6300
SAV1500	1500	3"	114	114	66	7165
SAV2000	2000	4"	113	120	72	9850
SAV2600	2600	4"	111	144	84	12,210
SAV3000	3000	6"	111	144	84	12,650
SAV4000	4000	6"	113	168	96	18,910
SAV5000	5000	6"	112	180	102	21,590
SAV6000	6000	6"	112	186	102	24,890
SAV7500	7500	8"	137	204	106	29,490

	CAPACITY CORRECTION FACTORS FOR DIFFERING OPERATING PRESSURE											
Operating Pressure psi	80	85	90	95	100	105	110	115	120	125	130	
Correction Factor	0.83	0.87	0.91	0.96	1.00	1.04	1.09	1.13	1.17	1.22	1.26	

CAPACITY CORRECTION FACTORS FOR DIFFERING INLET AIR TEMPERATURES											
Inlet Air Temperature ${}^\circ\! F$	80	85	90	95	100	105	110	115	120		
Correction Factor	1.17	1.17	1.17	1.15	1.00	0.87	0.76	0.66	0.58		

Air flow capacity = Operating pressure x Inlet air temperature

Standard outlet pressure dew point ${}^{\circ}\!\mathit{F}$ -40

Standard operating voltage 460V/3PH

ETL Listed (UL/CSA standards)

NEMA 12

ASME/CRN approved vessels

Min/max inlet air temperature $^{\circ}$ F 50/120

Min/max operating pressure *psi* 80/135, 80/150 (2000-7500 cfm)

Average purge air* 2%

^{*} Purge air percentage is the amount of dried compressed air diverted from the active drying vessel to the other vessel during the regeneration process. The diverted air does not return to the system. The lower the average purge percentage, the higher system efficiency is.

SAH SERIES

DESICCANT EXTERNALLY HEATED COMPRESSED AIR DRYERS

FREQUENCY: 60 Hz & 50 Hz

Model #	Flow Rate (cfm)	Connection Size (NPT)	Height (in)	Width (in)	Depth (in)	Total Fill Weight (lbs)
SAH500	500	2″	86	55	51	2060
SAH600	600	2″	93	57	51	2350
SAH800	800	2″	92	68	56	3035
SAH1000	1000	3″	103	78	63	4195
SAH1200	1200	3″	115	96	66	5215
SAH1500	1500	3″	115	114	66	7765
SAH2000	2000	4"	113	120	72	8565
SAH2600	2600	4"	111	144	78	11,562
SAH3000	3000	6″	111	144	78	12,002

	CAPACITY CORRECTION FACTORS FOR DIFFERING OPERATING PRESSURE											
Operating Pressure psi	80	85	90	95	100	105	110	115	120	125	130	
Correction Factor	0.83	0.87	0.91	0.96	1.00	1.04	1.09	1.13	1.17	1.22	1.26	

	CAPACITY CORRECTION FACTORS FOR DIFFERING INLET AIR TEMPERATURES										
Inlet Air Temperature °F 90 95 100 105 110 115 120											
Correction Factor	1.12	1.10	1.06	1.00	0.93	0.86	0.80				

Air flow capacity = Operating pressure x Inlet air temperature

Standard operating voltage 480V/3PH

ETL Listed (UL/CSA standards)

NEMA 12

ASME/CRN approved vessels

Min/max inlet air temperature $^{\circ}$ F 50/120

Min/max operating pressure *psi* 80/135, 80/150 (2000-3000 cfm)

Average purge air* 8%

^{*} Purge air percentage is the amount of dried compressed air diverted from the active drying vessel to the other vessel during the regeneration process. The diverted air does not return to the system. The lower the average purge percentage, the higher system efficiency is.

SA SERIES

DESICCANT HEATLESS COMPRESSED AIR DRYERS

FREQUENCY: 60 Hz & 50 Hz

Model #	Flow Rate (cfm)	Connection Size (NPT)	Height (in)	Width (in)	Depth (in)	Weight (lbs)
SA55	55	3⁄4″	79	24	27	400
SA100	100	1″	86	52	36	468
SA130	130	1″	86	52	36	496
SA200	200	1½″	86	52	36	692
SA250	250	1½″	85	52	36	776
SA300	300	1½″	85	52	36	796
SA400	400	2″	88	52	36	1626
SA500	500	2″	88	52	36	1735
SA600	600	2″	89	56	60	1740
SA800	800	2″	89	56	60	2120
SA1000	1000	3″	98	65	61	3676
SA1200	1200	3″	110	65	61	4605
SA1500	1500	4" FLG	117	72	77	4985
SA2000	2000	4″ FLG	113	118	59	5206
SA2600	2600	4″ FLG	111	138	67	7600
SA3000	3000	4″ FLG	111	138	67	8300

	CAPACITY CORRECTION FACTORS FOR DIFFERING OPERATING PRESSURE											
Operating Pressure psi	80	90	100	110	120	130	140					
Correction Factor	0.83	0.91	1.00	1.09	1.17	1.26	1.29					

CAPACITY CORRECTION FACTORS FOR DIFFERING INLET AIR TEMPERATURES												
Inlet Air Temperature ${}^{\circ}\!\mathit{F}$	Inlet Air Temperature F 90 95 100 105 110 115 120											
Correction Factor	1.17	1.15	1.00	0.87	0.76	0.66	0.58					

Air flow capacity = Operating pressure x Inlet air temperature

Standard outlet pressure dew point $\,^{\circ}\!\mathcal{F}\,$ -40

Standard operating voltage 120V/1PH

ETL Listed (UL/CSA standards)

NEMA 12

ASME/CRN approved vessels

Min/max inlet air temperature $^{\circ}F$ 50/120Min/max operating pressure ρsi 80/150Average purge air*15%

^{*} Purge air percentage is the amount of dried compressed air diverted from the active drying vessel to the other vessel during the regeneration process. The diverted air does not return to the system. The lower the average purge percentage, the higher system efficiency is.

DMD SERIES

DESICCANT MODULAR COMPRESSED AIR DRYERS

FREQUENCY: 60 Hz & 50 Hz

Model #	Flow Rate (cfm)	Connection Size (NPT)	Height (in)	Width (in)	Depth (in)	Weight (lbs)
DMD-3	3	1/2″	22	13	10	32
DMD-5	5	1/2″	25	13	10	36
DMD-10	10	1/2″	36	13	10	52
DMD-15	15	1/2″	32	15	10	57
DMD-20	20	1/2″	44	15	10	79
DMD-25	25	1/2″	50	15	10	90
DMD-30	30	1/2″	59	15	10	107
DMD-40	40	1½″	49	16	17	156
DMD-50	50	1½″	55	16	17	172
DMD-60	60	1½″	69	16	17	202
DMD-75	75	1½″	51	16	23	257
DMD-100	100	1½″	57	16	23	286
DMD-120	120	1½″	69	16	23	334
DMD-180	180	1½″	59	16	28	407
DMD-240	240	1½″	59	16	33	519

	CAPACITY CORRECTION FACTORS FOR DIFFERING OPERATING PRESSURE														
Operating Pressure psi	50	60	70	80	90	100	110	120	130	140	150	175	200	225	250
Correction Factor	0.56	0.65	0.74	0.83	0.91	1.00	1.04	1.08	1.12	1.16	1.2	1.29	1.37	1.45	1.52

CAPACITY CORRECTION FACTORS FOR DIFFERING INLET AIR TEMPERATURES													
Inlet Air Temperature $^{\circ}\!\mathit{F}$	Inlet Air Temperature F 70 80 90 100 105 110 115 120												
Correction Factor	1.12	1.1	1.06	1	0.93	0.86	0.8	0.75					

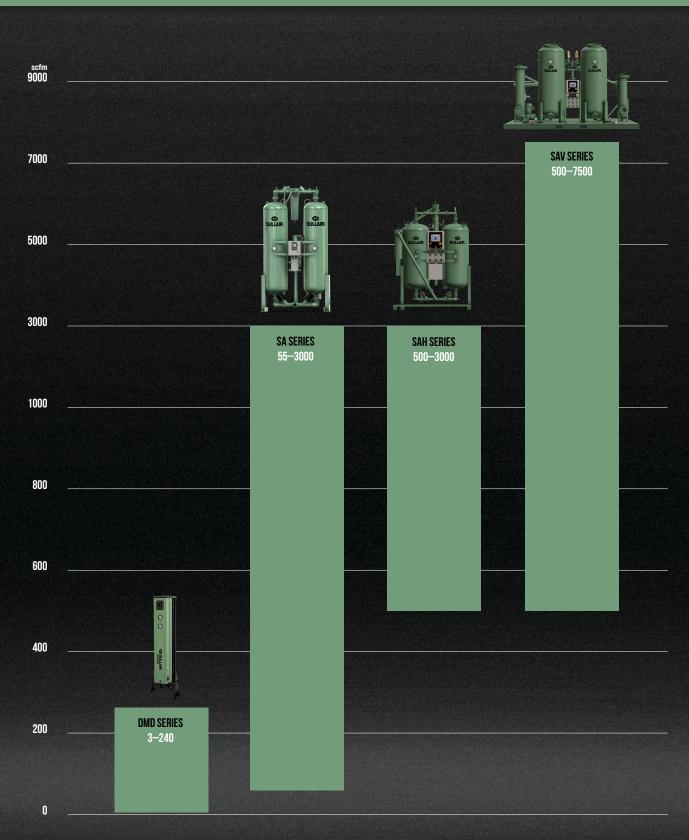
Air flow capacity = Operating pressure x Inlet air temperature

Standard outlet pressure dew point ${}^{\circ}\!\mathit{F}$

Standard operating voltage 115-230V/1PH

Pre- and post-filtration recommended

.01 **Pre-filtration grade** μm Post-filtration grade μm 1


ASME compliant **CRN** approved

cULus control panel

Max inlet air temperature $\,^{\circ}\!\mathcal{F}$ 122 Min/max ambient air temperature $\,^{\circ}\!\mathcal{F}$ 34/122 Min/max operating pressure psi 58/232 Average purge air* 15%

^{*} Purge air percentage is the amount of dried compressed air diverted from the active drying vessel to the other vessel during the regeneration process. The diverted air does not return to the system. The lower the average purge percentage, the higher system efficiency is.

FOR MORE INFORMATION, CONTACT YOUR LOCAL AUTHORIZED SULLAIR DISTRIBUTOR.

